
Chapter 1

Sensor-enabled smart suit electronic IoT design
platform with emergency services application

Migdat Hodzic1, James M. Brennan2 and Enis Dzanic3

An integrated smart suit sensor and positioning system electronic Internet of Things
(IoT) prototype has been developed to address the growing need for personal
welfare monitoring of first-line responders, defenders, and workers exposed to
industrial or other hazards, as well as other commercial and defense, and new
applications in cloud-based IoT. The system provides a global positioning system
(GPS) position map with coordinate data, current Greenwich mean time (GMT)
readout, subject’s heart rate, body temperature, and a long-wave thermal video
camera that provides a forward-looking thermal image. Physiologic data and ther-
mal imaging of the subject may be viewed by monitoring personnel using Internet
browser connected to the system’s static Internet protocol (IP) address. The system
is Wi-Fi connected to a local network, which can be extended to enable secure
connection to the Internet with incorporation of additional firmware. Details
regarding hardware and software configuration are presented along with an
appendix containing additional data. Source code for the software modules cur-
rently running on the prototype system is also available for interested parties or
potential users and customers.

1.1 Introduction

Recent years witnessed very considerable development in the areas of various
sensors for many related applications. In this context new IoT (Internet of Things)
technologies [1], in particular Cloud-based IoT [2,3], emerged as a response to a
growing need to connect a variety of devices in our homes, in the streets, cities, or
sensor-enabled devices which attach to our body or uniforms. New low power
wireless and wired sensor technologies have been developed and are used more
and more in many old and lots of new applications [4]. Sensors range from

1Engineering Department, American University in Bosnia and Herzegovina, Sarajevo, Bosnia and
Herzegovina
2BH Analytics, Santa Clara, California, USA and Sarajevo, Bosnia and Herzegovina
3Economics Department, University of Bihac, Bihac, Bosnia and Herzegovina

environmental, physiologic, range measurements, proximity sensors, and all the
way to very sophisticated special-purpose sensors for industrial and defense use
[5–7]. A variety of embedded and inexpensive platforms exist now for fast design
and prototyping such as Raspberry Pi [8]. Besides new sensors and IoT technolo-
gies, new “smart” materials are also becoming available more and more, with a
variety of functionality built-in, even some basic electronics built into the material
fabric [9]. One specific and important area of sensor development is infrared (IR)
and thermal sensors and cameras based on them [10]. These sensors now allow for
very detailed IR or thermal image sensing and digital framing with a usable number
of video frames [10]. In any useful IoT sensor-enabled smart suite, there is typically
a need for positioning data and hence GPS sensors are also required. In the smart
suite case, it would be required to have physiological data of the person wearing the
suit, and this means a need for temperature, heart rate, blood pressure, outside
environment pressure, humidity and temperature, and sensor for some dangerous
gas presence (such as in mines). It is in this spirit that we developed simple IoT
sensor-based smart suit design and testing electronic platform described in this
chapter. We opted to incorporate only basic sensor components such as GPS with
the antenna, temperature, and heart rate sensors, as well as thermal sensors. The
platform is based on popular Raspberry Pi HW and SW computer board, with
Wi-Fi and 4G built-in for Internet communications. In order to be able to demon-
strate a smart suit design platform, we also incorporated ability to view the suit
online using its static IP address. Wi-Fi is used for Internet connectivity. A variety
of customizations are possible depending on the interest of final users and custo-
mers and their needs for specific sensors.

1.2 System components

A general system block diagram of the smart suit system electronics is shown in
Figure 1.1. More specific component choices for our prototype and demonstration
design are indicated in Figure 1.2. The thermal camera (FLIR Lepton brand) is
connected to the host processor via SPI0 bus. The subject’s heartbeat and surface
body temperature sensors are connected to the host processor through the analog to
digital converter (ADC) via SPI1 bus and processed by an algorithm to extract heart
rate and average temperature. Additional inputs to the ADC are available for future
expansion capabilities to provide respiration rate and activity monitoring. The
host processor for the smart suit system is a Raspberry Pi 3 running a Debian Stretch
Linux distribution. When the system powers up, it automatically starts a Cþþ-based
thermal imaging application as well as a Python-based Flask web server, which also
inputs and formats all incoming data for presentation as a served webpage.

1.2.1 FLIR Lepton IR camera
The FLIR Lepton is an infrared camera system that integrates a fixed-focus lens
assembly, an 80 � 60 long-wave infrared (LWIR) microbolometer sensor array,
and incorporates signal processing electronics [10]. Easy to integrate and operate,

2 Wireless medical sensor networks for IoT-based eHealth

Lepton is intended for mobile devices as well as any other application requiring a
very small footprint, very low power, and instant-on operation. Lepton can be
operated in its default mode or configured into other modes through a command
and control interface (CCI). Using its default conditions, the FLIR Lepton
camera outputs 60 video packets per frame, each 1,312 bits long, at approxi-
mately 25.9 frames per second. The minimum output data clocking rate to the
camera is on the order of 2 MHz to allow it to keep up with its real-time image
generation. The camera data output provides three repeated identical frames in a
row, followed by a new frame making up another series of three frames. This
activity will repeat indefinitely if not interrupted or an error has happened. It
should be noted that this frame series format means that real-time new frame
output is approximately at a 9 Hz rate so that actual frame processing only
operates using only one out of three frames. The smart suit system processes
thermal frames at about nine per second but, at present, only grabs one still frame
per web page update. Software processing of the thermal frames includes false-
color map encoding that normalizes the brightest pixels to the most intense
coloring. This ensures that the image does not saturate thus masking less bright
features of the scene.

Industrial or custom
designed computer

Sensors:

Blood pressure
Other functions

Heart rate
Temperature
Thermal camera

GPS
positioning

Versatile low cost
hardware and

peripheral platform

Utility and
development
software

Wi-Fi connectivity
3G, 4G, and other

Lithium polymer battery
various periferals

Remote data
center
additional SW

Figure 1.1 Smart suit system general electronic block diagram

Sensor-enabled smart suit electronic IoT design platform 3

1.2.2 IR camera software
Image processing is done in the Cþþ language and includes algorithms to identify
and synchronize processing starting with frame packet number one, formatting and
processing each FLIR Lepton data line input into a 480 � 800 pixel image frame,
color mapping the brightness of pixels, and then converting the frame into a JPG
format for storage in memory. The frame stored in memory is accessed by the
Python-based web server application approximately once every 2–3 s for output to
the client display for the demonstration purposes.

1.2.3 Python-based flask web server
A Flask micro web server has been implemented to serve a web page containing
human subject physiologic data, current GPS coordinate data, an up-to-date GPS
location map, and the IR thermal image showing a color mapped scene ahead of the
subject. This server is implemented in Python, which generates a new web page
when a client application asks for an update (currently once every 2–3 s).
Processing includes capturing GPS time and coordinates, acquiring subject’s heart
rate and external body temperature, computing and formatting all of these values
into a python dictionary, and then sending the dictionary (data strings) to the client
webpage view. The client webpage presently uses a timed refresh period to ask for
an update from the server every 2–3 s. The data are collected in Java variables
within the page and processed to form result text, a google API map of the location,
and to render the thermal JPG image seen in Figure 1.3 (US Silicon Valley

To
network Wi-Fi

W
i-F

i

PC
Web

browser

Raspberry Pi 3
1.2 GHz
Arm A53 SPI1

ADC

BATT

USB

On/Off

HR

GPS
Rec.

IR
CAM

TMP

SPI0

Figure 1.2 Smart suit system-specific block diagram

4 Wireless medical sensor networks for IoT-based eHealth

location) and Figure 1.4 (Sarajevo, Bosnia and Herzegovina location). At this point,
we did not spend lots of time in making graphical user interface (GUI) more
sophisticated. As Figures 1.3–1.5 indicate the GUI is just a basic one for the suit
system demonstration and prototyping purposes. Figure 1.6 shows an additional
thermal image of a person in front of the Lepton thermal image sensor built into
the suit.

1.2.4 Raspberry Pi 3 Debian stretch operating system start
The smart suit system connection diagram shown in Figure 1.7 relies upon the
underlying Linux operating system to host the thermal and Flask web server
applications. At power-on, the system automatically starts both the Flask server and
the Lepton Thermal Imager applications. The Flask web server startup process uses
the CHRON daemon to read a script at startup. This is initially setup during
development using the CRONTAB command and is done from within the directory
/var/spool/cron/crontabs/pi. See Appendix A for the general procedure. During
startup, the operating system will look for shell scripts in the user’s home directory,

Smart Suit Location and Physiologic Data

Time:

Latitude:

Longitude:

Altitude:

Heart Rate:

Temperature:

2018-01-08T23:18:18.000Z

37.397591667

−121.984415

25.2

62.38

28.63 °C/83.54 °F

Figure 1.3 Client web page displaying collected data, map, and image located in
Silicon Valley, USA

Sensor-enabled smart suit electronic IoT design platform 5

Smart Suit Location and Physiologic Data

Time:

Latitude:

Longitude:

Altitude:

Heart Rate:

Temperature:

2018-02-06T22:53:07.000Z

43.856953333

18.418896667

525.4

0.00

3.17 °C/37.71 °F

Figure 1.4 Client web page displaying collected data, map, and image located in
Silicon Valley, USA

Smart Suit Location and Physiologic Data
2018-02-12T13:29:12.207Z
43.856306667
18.42483
111.8
0.00
3.82 °C/38.87 °F

Time:
Latitude:
Longitude:
Altitude:
Heart Rate:
Temperature:

Figure 1.5 Client web page displaying collected data, map, and image located in
Ilidza TRZ factory, B&H

6 Wireless medical sensor networks for IoT-based eHealth

in this case /home/pi/startup.sh. The script found at this location is used to start up
the Lepton thermal imaging application. Content of startup.sh can be obtained if a
customer requires this. It should be noted that the Lepton thermal imaging appli-
cation named “Demo,” as found in directory /home/pi/Qt/Demo/build-Demo-
kit2-Debug/, is a stand-alone executable and has been built using the Qt4

BH-Analytics Lepton Demo

Figure 1.6 Thermal images of a person in front of Lepton thermal camera

Lepton module

/CS

Pwr,
Gnd,
Data

User
Cntl

Ext
Pwr

Display

UI

SCK

MISO

SCL

SDA

GND

Power module

+3.1V

+3.1V

+3.1V, +2.8V, +1.2V

Battery module

Host processorLens

Figure 1.7 Smart suit system connection block diagram

Sensor-enabled smart suit electronic IoT design platform 7

development application. The setup of the Qt4 environment is referenced in smart
suit system documentation. Another script that is automatically executed during the
startup process allows system shutdown when a specific hardware pin is grounded.
This script is found at /etc/init.d/listen-for-shutdown.sh and runs a Python script
found at /usr/local/bin/listenfor-shutdown.py, which when invoked runs con-
tinuously in the background waiting for a hardware pin instituted shutdown inter-
rupt signal. Once the system starts up and the required applications are each
separately running, the Flask web server is ready to respond to a client application
request if the Wi-Fi feature is operational.

1.3 System hardware

The connection diagram in Figure 1.6 shows the Raspberry Pi 3 I/O ports and
general pins used to interface system hardware components. Numerous connectors
are used to route sensor data to the required I/O pins. Depending on the number of
required sensors, the I/O pins functionality can be customized for a specific
application. The system has enough capacity to accommodate a number of addi-
tional sensors if required.

1.3.1 Hardware data collection and transfer
The Raspberry Pi 3 (RP3) uses 2 separate SPI busses to transfer data: (1) SPI0 to
clock in data from the MCP3008 ADC and (2) SPI1 to clock in data from the FLIR
Lepton thermal imaging module. This is done to provide the different clock speeds
required by each device. The MPC3008 ADC uses a 200 KHz transfer clock to
provide the lower demand heart rate and temperature measurements, which are
collected at ten samples per second.

The FLIR Lepton thermal module, however, requires a minimum transfer
clock of 2 MHz to provide its 27 fps image rate. The thermal module operates in an
autonomous manner in its present configuration after it is powered on by providing
serial data in an open-loop fashion when given a clock. No other programming is
required to access its data via SPI serial bus. At present, a momentary power
interrupt switch is placed in the thermal module’s Vdd input to allow for operator
reset of the device due to over temperature or other uncontrolled noisy conditions.
A later version of the smart suit system will use a dedicated I/O control bit to
periodically reset and resynchronize the module to prevent unexpected loss of sync.
The MPC3008 requires a lower clock speed due to its internal analog-to-digital
converter electronics conversion of the input signal into a 12-bit digital value. Two
analog channels are currently used with the heart rate monitor requiring ten
acquisitions per second, with temperature acquisition being converted at the same
time for convenience as these parameters do not change rapidly. GPS information
is input to the RP3 via a USB connection and provides NMEA standard 0183 output
using a simple serial protocol. The GPS module used is an Adafruit Version 3
Ultimate Breakout, with a �165 dBm input sensitivity and capable of receiving
66 channels with 10 Hz updates. It is possible to connect an external active antenna

8 Wireless medical sensor networks for IoT-based eHealth

to its input to increase its sensitivity to in excess of �185 dBm when the environ-
ment provides weak signal conditions. GPS coordinate information is provided to a
Python program running in the background and feeding the Flask web server
each time it packages data to send to the client web page. A hardware shutdown
button is provided to ensure the orderly shutdown of the Linux operating system.
The operation of this switch causes an interrupt that executes the listen-for-
shutdown.sh shell script. The shutdown script is available in the smart suit detailed
documentation.

1.4 Smart suit system

As indicated earlier two separate software modules and applications are auto-
matically started during the system power-on operation:

● The Lepton Thermal Imager and
● The Flask server

1.4.1 Thermal imager module
When the Lepton Thermal Imager application is started, it creates a “LeptonThread”
object to set up the operating parameters, such as SPI clock speed and frame size,
then enters a continuous working loop. The loop inputs a line of data from the
thermal camera consisting of row number plus 80 pixels while scanning for and then
synchronizing to the first line count number of a frame. Once the first row is iden-
tified, the thread continues inputting lines of pixel data, storing them in an array,
until the line count reaches the maximum (currently set to 60 lines), after which it
scans the data array to find its max and min pixel values. Finally, it invokes an update
image operation with arguments consisting of the data array, with maximum and
minimum values for further processing in the main thread. When the main thread
receives a completed frame, it pseudo colors the pixels (using a selected color map)
based upon the maximum and minimum values present to form a completed image
frame. The completed image frame is written as a high-quality JPG to working
memory based upon a periodic timer event, which at present is limited to 1.8 s
per frame.

1.4.2 Flask server module
When the Flask server is started, it first initializes the GPS system and senses that it
is actually attached to the RP3. If the hardware is not present, it keeps looking for
the attached hardware and will not continue until this important component part of
the system is connected. When present, the GPS subsystem runs continuously in the
background to populate time and coordinate data arrays for use by the web server.
When the web server receives a request from the client application, it utilizes the
populated GMT time and coordinates data arrays to construct a data structure
(python dictionary). Additionally, the collected physiologic data (heart rate and
temperature) are appended to the data structure. When all data have been

Sensor-enabled smart suit electronic IoT design platform 9

incorporated, the web page template is rendered to contain the newly updated data,
along with other java script operations to finalize the page. See Appendix A.1 for
more details on system startup detailed scripts and Appendix A.2 on smart suit
system application modules.

1.5 Wi-Fi setup and operation

Since the smart suit system uses a local area network to transport and to present its
data, it must first be connected to the network. The smart suit system uses a fixed
dedicated network IP address (e.g., 192.168.0.99), which will be different for each
smart suit system, and must fall within the range of addresses used by the network
configuration. Each smart suit system acts as its own web server and is accessed on
a fixed IP address at port 5000 (such as 192.168.0.99:5000). Wi-Fi setup of the
system requires that a specific file contains the Service Set Identifier “SSID” and
passphrases “PSK” for the network. For a “headless” system (one without monitor,
keyboard, and mouse), these two items must be known ahead of time and added to
the configuration file. This file may be set up prior to connecting to the Wi-Fi
network for the first time, which should allow for automatic connection thereafter
when the smart suit system boots. In a “headless” system, this configuration file
must be positioned in the root directory on the RP3, which then gets automatically
transferred to the /etc/wpa_supplicant directory upon the first bootup. The easiest
way to setup this file is to edit it directly on the micro-SD card using a PC. This
may be accomplished by using a micro-SD adapter plugged into the PC. Note that
the boot sector of the micro-SD card is readable by the PC (under Windows)
because it has the correct FAT32 structure. A text editor (Notepad) may be used to
edit this file (wpa_supplicant.conf) in the micro-SD cards root directory. One has
to make sure that no nontext or other characters are inadvertently entered in the file.
The detailed contents of this file are in smart suit system documentation and it is
used when setting up the system at some particular location with a specific Wi-Fi
Access Point. After booting, Wi-Fi configuration file will be relocated to RP3
directory: /etc/wpa_supplicant/wpa_supplicant.conf. If the Wi-Fi does not appear
to start up during operation, it could be due to an error in the original wpa_supplicant.
conf file (such as tabs, or other wrong characters, or formatting) that had been placed
in the micro-SD card’s/boot directory. If HDMI display output with keyboard and
mouse is available for the RP3, then editing the /etc/wpa_supplicant.conf file directly
with the correct parameters should restore Wi-Fi hardware operation. This file may
contain multiple network entries to allow the RP3 Wi-Fi to automatically connect at a
number of locations. Since the Smart Server System web server delivers its web page
to a fixed (programmed in) IP address, for example, http://192.168.0.99:5000, the
router (Wi-Fi Access Point) used must not automatically assign some other device to
this fixed address value. It might be necessary to set a reserved static IP address in the
router for this purpose, but one needs to check the local router set up first. When
finally connected to the network, one should use a newer Edge Microsoft web
browser, or an updated Firefox browser to view the web page at the above IP address.

10 Wireless medical sensor networks for IoT-based eHealth

It is not recommended to use Chrome on PC, as it caches the thermal image then only
uses the first one received with none of the new updates being viewable. It is possible
to use a smart phone or tablet web browser to see the web page at the above IP
address. This may later be useful in using a tablet directly as one of the smart suit
components, for example, for some control purposes [11]. Figure 1.8 shows a partial
list of configuration files.

1.6 Implementation

1.6.1 Components
The smart suit system platform components are shown in Figure 1.9, and their
typical cost is summarized in Table 1.1. The total component cost is less than
$150 in small quantities. These components were chosen because they were readily
available and more choices exist today at smaller prices, so we can assume the total
cost to be less than $100 in large quantities. More sensors can be added as well per
the customer’s requirement. In any case, we did not optimize either the cost or the

Figure 1.8 An excerpt from smart suit set of configuration files

Sensor-enabled smart suit electronic IoT design platform 11

design configuration. The aim was to have an electronic demonstration and mar-
keting platform as well as a general electronic design platform. The biggest chal-
lenge in the project was to design this platform in a very short period of time which
was only 3 months. Additional 2 weeks were needed to implement the components
into the suit itself and test it. All the components were embedded inside the suit
with addition of a couple of pockets to hold the components and make them
available for set up and system activation/reset. The GPS sensor was placed up in
the shoulder of the suit, and its antenna on the other shoulder. The thermal camera
was situated in the upper pocket. The computer module with the battery is in an
inner pocket secured with Velcro; heart rate and temperature sensors were located
in one of the suit sleeves. Also, cabling was embedded throughout the suit to
connect all the components. The computer module has both 4G as well as Wi-Fi
modules, and Wi-Fi was used to connect the suit with Internet via local Wi-Fi
access point. A Micro SD card had all the drivers and software required to run the
suit. The suit was tested in a number of locations around Sarajevo, Bosnia and
Herzegovina and Silicon Valley, USA. For example, Figures 1.4 and 1.5 show two
streets in Sarajevo area and Figure 1.3 shows a street in Silicon Valley, with Google
Map in lower-left corner indicating the street, as well as showing a person inside
the building with his temperature and heart rate data and his thermal image
obtained from the camera in the suit upper pocket. These data were obtained by
logging into the suit “web site” which showed what the suit condition at that point
in time. The platform is suitable for a specific sensor(s) extension as it may be
required by a specific application at hand.

1.6.2 Application
The smart suit platform as described in this chapter is suitable for many different
applications, both for defense and for a variety of commercial applications [11].
The suit in the right upper corner of Figure 1.9 was supplied for demonstrating
purposes, and a smaller and lighter suit (jacket) can be also used. The components
from Table 1.1 were physically implemented in that demo suit using proper wiring.
One could have also used various wireless versions of these components. The suit

Table 1.1 Component cost in small quantities

Description Unit cost

Raspberry Pi 3—Model B—ARMv8 with 1G RAM $35.00
Aluminum heat sink for Raspberry Pi 3 15 � 15 � 15 mm $1.95
Pi Model Bþ Pi 3 case base—smoke gray $5.00
Adafruit ultimate GPS breakout-66 channel W/10 Hz updates—Version 3 $39.99
GPS antenna—external active antenna 3–5 V 28 dB 5 m $12.95
SMA to uFL u.FL/IPEX RF adapter cable $3.95
USB to TTL serial cable—debug/console cable for Raspberry Pi $9.95
Pulse sensor amped $25.00
TMP36—Analog temperature sensor $1.50

12 Wireless medical sensor networks for IoT-based eHealth

was demonstrated to a number of potential users such as local police, mountain
rescue groups, as well as civil protection service and several defense applica-
tion users. Each of the potential customers indicated their own specific
requirements, in particular sensor-related details. Our smart suit design plat-
form can accommodate adding additional sensors and integrating them via
embedded computer and software developed for the Platform. Sensors can be
either wired or wireless, and each customer may supply their own specific suit
or jacket. Figure 1.10 shows some possible applications and a variety of dif-
ferent suits and also a possible remote connectivity arrangements whereas the
suit would be connected to some customer control center from where the suit
parameters and the movement of the person wearing it could be observed. One
of the applications which emerged from potential customers following
demonstration of our design was a need to have personnel positions and their
health as well as kinetic (moving, not moving, running, and walking) infor-
mation available at all times within a company or other campus, or a large
building. For this, the Wi-Fi would be good enough. For field applications one

GPS antenna

GPS sensor

Thermal camera

Prototype
TRZ
suit

Raspberry Pi
Computer
with SW

and Wi-Fi
High capacity Li-Ion

batteryAD converter

Temperature
and pulse
sensors

Candidate
suit

jacket

Cables

Figure 1.9 Smart suit prototype and components layout

Sensor-enabled smart suit electronic IoT design platform 13

would need 3G or 4G for wide-area wireless networking. Our design has both
of these options built-in.

1.6.3 Mountain rescue services emergency response
application

As described in Section 6.2, our smart suit design has a wide applicability across
various commercial, security, and emergency services applications. One specific
area of interest has emerged from our application surveys in Sarajevo area in
Bosnia and Herzegovina came from a dedicated mountain rescue unit, which is of
interest due to a number of surrounding mountains and Olympic skiing tradition,
with a sizeable amount of snow and skiing activities during the winter season. Per
our discussion with a local mountain rescue group, our basic suit design is an
excellent technological base which would require some sensor additions and fine
tuning. In particular, due to the remoteness of the applicable terrain where moun-
tain rescue might transpire, Wi-Fi may not be the best choice for audio, physiolo-
gical, and visual or thermal data communications, hence mobile GSM 3G, 4G, or
5G would be a preferable choice. In addition to GSM communication, a digital
VHF radio infrastructure already used by the mountain rescue unit is under con-
sideration. This is important as there are potential blind spots for GSM coverage in
some deep ravines and canyons in the area. Our design accommodates that option
as well, whereas a suitable data modem would be connected instead of (or on top
of) Wi-Fi device, see Figures 1.1 and 1.10. Mountain rescue teams would be able to
communicate real time data from the terrain, as they move around in their rescue
effort. As this activity transpires a control center nearby (Figure 1.10) would be
able to access the team physical condition, their heart rate, and temperature, indi-
cating the condition of the team, whereas additional sensors would be used to
evaluate vital functions of the persons being rescued, once they are located. It
would be pretty trivial to add additional sensors, such as a standard video camera to

Police and civil services applications

Smart
protective

suit

Ultra-low frequencies

Short range wireless
Bluetooth

Wireless data (Wi-Fi)

ZigBee wireless

3G, 4G, digital radio
communications

Remote connectivity options

Figure 1.10 Applications and remote connectivity

14 Wireless medical sensor networks for IoT-based eHealth

have a real time video transmission as the search is progressing. In addition to the
above, an additional integrated or a separate voice communication device could be
added to the rescue team suits, which can further facilitate the effectiveness of their
efforts. As the prototype suit is designed, the rescue team will be used to test its
various features in real rescue or simulated conditions on the real terrain, which can
assist in fine-tuning the suit design. Figure 1.10 shows a few possible rescue uniforms
and suits which can be used to implement our design for mountain rescue application.

1.7 Conclusion

In this chapter, we present a prototype design of a smart suit (jacket) which uses GPS,
temperature, heart rate, as well as thermal information sensor embedded into a spe-
cific suit for demonstration purposes. The suit has its own Internet address and as such
can be accessed remotely and its condition can be observed in real time every second.
Real data transfer which the platform can accommodate is much larger. Other sensors
can be added as well. Wi-Fi is also viable for the data communications, as well as 3G
or 4G mobile communications if required by a specific application. These applications
range from a variety of commercial to specific defense areas. The smart suit as
implemented can be a part of a larger system such as of a Smart City with a number of
city services interconnected and smart suit as a part of these services.

Appendix A

Software startup scripts and modules

A.1 System startup detailed scripts
Crontab

At system powerup, the Flask web server is started using the cron daemon,
which is setup within directory /var/spool/cron/crontabs/pi. This daemon has
already been setup for operation in released code. Development programming uses
the terminal crontab command:

crontab -u pi -e
This will bring up an editor allowing changes to be made to the crontab (cron

table). The following is then entered on the last line of the file that opens (Note:
press i for insert):

@reboot sleep 20; /usr/bin/python3
/home/pi/webpy/servflask.py
When finished editing type “esc” to exit the edit mode, then save and exit the

editor by typing “wq”. The file will run at startup and delay bootup for 20 s to allow
Python to execute the script servflask.py found in directory /home/pi/webpy. After the
20 s delay is over, the python script should have run and the bootup process can
continue.

Sensor-enabled smart suit electronic IoT design platform 15

startup.sh When the system starts up, it executes the startup.sh script found in
the user’s home directory /home/pi/startup.sh. This shell script is used to start up
the Lepton thermal imaging application and contains the following:

#! /bin/sh
#Start Lepton
/home/pi/Qt/Demo/build-Demo-kit2-Debug/./ Demo
listen-for-shutdown.sh
During system startup, a script allowing shutdown when I/O Port pin 3 is

grounded is executed. Note that shutting down the Operating System in this manner
causes a processor halt. When halted, the system may be re-started again by
grounding I/O Port pin 3. The shutdown script contains the following:

#! /bin/sh
BEGIN INIT INFO
Provides: listen-for-shutdown.py
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
END INIT INFO
case “$1” in
start)
echo “Starting listen-for-shutdown.py”
/usr/local/bin/listen-for-shutdown.py
;;
stop)
echo “Stopping listen-for-shutdown.py”
pkill -f /usr/local/bin/listen-for-shutdown.py
;;
*)
echo “Usage: /etc/init.d/listen-for-shutdown.sh
start|stop”
exit 1
;;
esac
exit 0
listen-for-shutdown.py
Python script invoked from startup shell script listen-for-shutdown.sh. This

script sets GPIO3 as an interrupt source that triggers when Raspberry Pi port pin 5
is grounded, causing system shutdown. Contents of Python script listen-for-
shutdown.py is: Contents of listen-for-shutdown.py is:

#!/usr/bin/env python
import RPi.GPIO as GPIO
import subprocess
GPIO.setmode(GPIO.BCM)
GPIO.setup(3, GPIO.IN, pullq_up_down¼GPIO.PUD_UP)

16 Wireless medical sensor networks for IoT-based eHealth

GPIO.wait_for_edge(3, GPIO.FALLING)
subprocess.call([“killall”, “python3”])
subprocess.call([“killall”, “python3”])
subprocess.call([“sudo”, “shutdown”, “now”])
subprocess.call([“echo”, “POWER OFF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!”], shell¼True)
wpa_supplicant.conf
A first-time boot-up of the system transfers the wpa_supplicant.conf file (if

found) from the root directory on microSD card to the Linux system /etc/wpa_-
supplicant directory. After the system is started, look for this file in directory etc/
wpa_supplicant/wpa_supplicant.conf. This file is used to configure the Wi-Fi with
its operational credentials and has the following format:

ctrl_interface¼DIR¼/var/run/wpa_supplicant GROUP¼netdev
update_config¼1
country¼BA
network¼
ssid¼“Your SSID name”
psk¼“Your password”
key_mgmt¼WPA-PSK

A.2 Smart suit system application modules
Thermal imager module

The thermal imager executable is invoked during the startup procedure when
startup.sh, located at /home/pi/startup.sh, is run. This shell script issues the run
operation (./Demo) on this executable file in directory /home/pi/Qt/Demo/build-
Demo-kit2-Debug/. Contents of the startup.sh script are:

/bin/sh
Start Lepton
/home/pi/Qt/Demo/build-Demo-kit2-Debug/./Demo
The Demo project was developed using Qt4 and generates the executable file

named “Demo.” Qt is a cross-platform development environment but is used
natively on the Raspberry Pi 3 platform under Debian Linux distribution. This
means that the entire development environment operates on the Pi and its build
output is saved directly to a local development directory. Program execution by the
startup shell file invokes the executable out of this target directory. Once started,
the application initializes the Qt-based MainWindow parameters to setup the image
for display, starts a periodic timer, and then starts the Lepton thread reading the
Lepton thermal camera image. The Lepton thread runs in the background, taking in
and processing pixel data at the thermal camera’s normal data rate of 27 frames per
second. New frames are generated at only nine frames per second, however, with
frames being saved to an array in memory. The periodic timer is, at present, setup
to save the presently available image to a JPG format in memory, which is acces-
sible by the web server when an image is needed. Thermal Imager Module opera-
tion is outlined in the following diagram in Figure A.1.

Sensor-enabled smart suit electronic IoT design platform 17

do/Initialize
do/...Height and Weight
do/...Image params
do/...Screen Widgets
do/...Timer
do/...Lepton Thread

MainWindow Initialize

Lepton Thread

MainWindow UpdateImage

MainWindow TimerEvent

Start Lepton Thread

UpdateImage

TimerEvent

do/Initialize
do/...Setup SPI params
do/run()
do/...Loop on FrameHeight
do/......getPacket()
do/......Sync on first line
do/......Collect all packets in frame
do/Get min and max values in frame
do/Generate normalized data frame
do/emit updateImage() with norm. frame

do/Copy frame to rawData array
do/for frame height and width
do/...convert data to 8-bit pixel
do/...map data to pseudo color pixels
do/Update on-screen image

do/Save RBG image to:
do//home/pi/webpy/static/therm.jpg

Figure A.1 Diagram of thermal imager application demo

18 Wireless medical sensor networks for IoT-based eHealth

Qt4 creator
The software development framework from open source Qt4 has been used to

edit and build the Thermal Imager module to produce executable “Demo.”
Installation of Qt4 on the Raspberry Pi is done using the following steps from
terminal (use LXTerminal to build, compile, and run Qt):

1. Verify that current time and date are set on the Raspberry Pi
2. sudo apt-get update

servflask Initialization

Client webpage

App Route “/url_for”

@app.route(”/”) event

@app.route(”/”) : Get render_template

return imageurl_for therm.jpg

do/Various Initialization operations
do/...init directories
do/...init GPIOs
do/...init GPS socket
do/...init Pulsesensor()
do/...init Flask app

do/Write title; set map size
do/Define java timedRefresh funct.
do/Invoke onload timedRefresh
do/Write passed in params to page
do/Write GPS map to screen
do/Get therm.jpg; write to screen

do/return static/therm.jpg

App Route “/”
do/index()
do/Start one second timer
do/...if data found
do/......get bpm, tmp and convert
do/......break
do/...if one sec timeout
do/......break
do/Convert data, add to dictionary
do/write data to client webpage

Figure A.2 Diagram of flask server module application

Sensor-enabled smart suit electronic IoT design platform 19

3. sudo apt-get upgrade
4. sudo apt-get install qtcreator
5. Open Qtcreator and go to: Options ¿ build & run ¿ tab tool chain ¿ button add

¿Choose GCC
6. Set compiler path: /usr/bin/arm-linux-gnueabihf-gcc-4.6

Debugger: /usr/bin/gdb Mkspec : default
7. Go to menu help ¿ about plugins and Uncheck device support ¿ remote linux

Restart Qt creator
Go to tools ¿ options TAB ¿ build & run ¿ Qt versions ¿ add “/usr/bin/qmake-

qt4”
After code has been edited, open LXterminal and make the current directory

containing the project files the current directory. To build project use the
following:

1. qmake -project
2. qmake <yourprojectname>.pro
3. make (//For compilation of the code)
4. sudo ./< yourprojectname> (//For running the program)

Command qmake only needs to be done the first time to generate the make file,
then after code changes are made only command make is necessary to build the
project.

Flask server module smart suit web server software development is undertaken
using Python version 3 and the Flask server environment. The Raspberry Pi 3
operating system comes with both Python v2.7.13 and v3.5.4 installed. To run
programs under Python 3, however, the user must explicitly enter “python3” on the
command line (entering just python will invoke version 2.7). Note that the startup
script that invokes the Flask server application first calls Python 3 (/usr/bin/
python3), before Flask. Flask operation is outlined in the following diagram in
Figure A.2.

References

[1] Al-Turjman F., Altrjman C., Din S., and Paul A. “Energy monitoring in IoT-
based ad hoc networks: An overview.” Elsevier Computers & Electrical
Engineering Journal. 2019, vol. 76, pp. 133–142.

[2] Al-Turjman F. “Cognitive routing protocol for disaster-inspired Internet of
Things.” Elsevier Future Generation Computer Systems. 2019, vol. 92,
1103–1115.

[3] Al-Turjman F. “Cognitive-node architecture and a deployment strategy for
the future sensor networks.” Springer Mobile Networks and Applications.
2019, vol. 24, no. 5, pp. 1663–1681.

[4] Hodzic M. and Muhic I. “Internet of Things: Current technological review.”
Periodicals of Engineering and Natural Sciences. 2014, vol. 2, no. 2.

20 Wireless medical sensor networks for IoT-based eHealth

[5] Accenture Corporation. Delivering public service for the future: Navigating
the shifts. Corporate handbook. Austin, TX, USA; 2012.

[6] European Commission. Smart wearables: Reflection and orientation paper.
Directorate-General for Communications Networks, Content and
Technology. Brussels, Belgium: EU; 2016.

[7] Research and Markets. Wearable electronics—Market analysis, trends, and
forecasts. Global Industry Analysts, Inc. San Jose, CA, USA; 2016.

[8] Raspberry Pi Foundation. Raspberry Pi 3 Model B (Reduced Schematics).
Cambridge, UK; 2015.

[9] Coyle, S., Wu, Y., Lau, K.T., De Rossi, D., Wallace, G. and Diamond, D.
“Smart nanotextiles: A review of materials and applications.” Mrs Bulletin.
2007, 32(5), pp. 434–442.

[10] FLIR Corporation. Lepton Engineering Datasheet. Document Number:
500-0659-00-09 Rev: 203. Wilsonville, OR, USA; 2017.

[11] Hodzic M. Smart suit presentation. Author’s private archive. 2019.

Sensor-enabled smart suit electronic IoT design platform 21

	1 Sensor-enabled smart suit electronic IoT design platform with emergency services application
	1.1 Introduction
	1.2 System components
	1.2.1 FLIR Lepton IR camera
	1.2.2 IR camera software
	1.2.3 Python-based flask web server
	1.2.4 Raspberry Pi 3 Debian stretch operating system start

	1.3 System hardware
	1.3.1 Hardware data collection and transfer

	1.4 Smart suit system
	1.4.1 Thermal imager module
	1.4.2 Flask server module

	1.5 Wi-Fi setup and operation
	1.6 Implementation
	1.6.1 Components
	1.6.2 Application
	1.6.3 Mountain rescue services emergency response application

	1.7 Conclusion
	Appendix A Software startup scripts and modules
	A.1 System startup detailed scripts
	A.2 Smart suit system application modules

	References

